
This book is licensed under a Creative Commons Attribution 3.0 License

3. Algorithm animation
I hear and I forget, I see and I remember, I do and I understand.

A picture is worth a thousand words—the art of presenting information in visual form.

Learning objectives:

• adding animation code to a program

• examples of algorithm snapshots

Computer-driven visualization: characteristics and techniques

The computer-driven graphics screen is a powerful new communications medium; indeed, it is the only two-way

mass communications medium we know. Other mass communications media–the printed e.g. recorded audio and

video—are one-way streets suitable for delivering a monolog. The unique strength of our new medium is interactive

presentation of information. Ideally, the viewer drives the presentation, not just by pushing a start button and

turning a channel selector, but controls the presentation at every step. He controls the flow not only with

commands such as "faster", "slower", "repeat", "skip", "play this backwards", but more important, with a barrage of

"what if?" questions. What if the area of this triangle becomes zero? What if we double the load on this beam? What

if world population grows a bit faster? This powerful new medium challenges us to use it well.

When using any medium, we must ask: What can it do well, and what does it do poorly? The computer-driven

screen is ideally suited for rapid and accurate display of information that can be deduced from large amounts of

data by means of straightforward algorithms and lengthy computation. It can do so in response to a variety of user

inputs as long as this variety is contained in an algorithmically tractable, narrow domain of discourse. It is not

adept at tasks that require judgment, experience, or insight. By comparison, a speaker at the blackboard is slow and

inaccurate and can only call upon small amounts of data and tiny computations; we hope she makes up for this

technical shortcoming by good judgment, teaching experience, and insight into the subject. By way of another

comparison, books and films may accurately and rapidly present results based on much data and computation, but

they lack the ability to react to a user's input.

Algorithm animation, the technique of displaying the state of programs in execution, is ideally suited for

presentation on a graphics screen. There is a need for this type of computation, and there are techniques for

producing them. The reasons for animating programs in execution fall into two major categories, which we label

checking and exploring.

Checking

To understand an algorithm well, it is useful to understand it from several distinct points of view. One of them is

the static point of view on which correctness proofs are based: Formulate invariants on the data and show that

these are preserved under the program's operations. This abstract approach appeals to our rational mind. A second,

equally important point of view, is dynamic: Watch the algorithm go through its paces on a variety of input data.

This concrete approach appeals to our intuition. Whereas the static approach relies mainly on "thinking", the

dynamic approach calls mostly for "doing" and "perceiving", and thus is a prime candidate for visual human-

Algorithms and Data Structures 24 A Global Text

http://creativecommons.org/licenses/by/3.0/

3. Algorithm animation

computer interaction. In this use of algorithm animation, the user may be checking his understanding of the

algorithm, or may be checking the algorithm's correctness—in principle, he could reason this out, but in practice, it

is faster and safer to have the computer animation as a double check.

Exploring

In a growing number of applications, computer visualization cannot be replaced by any other technique. This is

the case, for example, in exploratory data analysis, where a scientist may not know a priori what she is looking for,

and the only way to look at a mass of data is to generate pictures from it (see a special issue on scientific

visualization [Nie 89]). At times static pictures will do, but in simulations (e.g. of the onset of turbulent flow) we

prefer to see an animation over time.

Turning to the techniques of animation, computer technology is in the midst of extremely rapid evolution

toward ever-higher-quality interactive image generation on powerful graphics workstations (see [RN 91] for a

survey of the state of the art). Fortunately, animating algorithms such as those presented in this book can be done

adequately with the graphics tools available on low-cost workstations. These algorithms operate on discrete data

configurations (such as matrices, trees, graphs), and use standard data structures, such as arrays and lists. For such

limited classes of algorithms, there are software packages that help produce animations based on specifications,

with a minimum of extra programming required. An example of an algorithm animation environment is the BALSA

system [Bro 88, BS 85]. A more recent example is the XYZ GeoBench, which animates geometric algorithms

[NSDAB 91].

In our experience, the bottleneck of algorithm animation is not the extra code required, but graphic design.

What do you want to show, and how do you display it, keeping in mind the limitations of the system you have to

work with? The key point to consider is that data does not look like anything until we have defined a mapping from

the data space into visual space. Defining such a mapping ranges from trivial to practically impossible.

1. For some kinds of data, such as geometric data in two- and three-dimensional space, or real-valued

functions of one or two real variables, there are natural mappings that we learned in school. These help us

greatly in getting a feel for the data.

2. Multidimensional data (dimension ≥ 3) can be displayed on a two-dimensional screen using a number of

straight forward techniques, such as projections into a subspace, or using color or gray level as a fourth

dimension. But our power of perception diminishes rapidly with increasing dimensionality.

3. For discrete combinatorial data there is often no natural or accepted visual representation. As an example,

we often draw a graph by mapping nodes into points and edges into lines. This representation is natural for

graphs that are embedded in Euclidean space, such as a road network, and we can readily make sense of a

map with thousands of cities and road links. When we extend it to arbitrary graphs by placing a node

anywhere on the screen, on the other hand, we get a random crisscrossing of lines of little intuitive value.

In addition to such inherent problems of visual representation, practical difficulties of the most varied type

abound. Examples:

• Some screens are awfully small, and some data sets are awfully large for display even on the largest screens.

• An animation has to run within a narrow speed range. If it is too fast, we fail to follow, or the screen may

flicker disturbingly; if too slow, we may lack the time to observe it.

25

This book is licensed under a Creative Commons Attribution 3.0 License

In conclusion, we hold that it is not too difficult to animate simple algorithms as discussed here by interspersing

drawing statements into the normal code. Independent of the algorithm to be animated, you can call on your own

collection of display and interaction procedures that you have built up in your frame program (in the section "A

graphics frame program). But designing an adequate graphic representation is hard and requires a creative effort

for each algorithm—that is where animators/programmers will spend the bulk of their effort. More on this topic in

[NVH 86].

Example: the convex hull of points in the plane

The following program is an illustrative example for algorithm animation. 'ConvexHull' animates an on-line

algorithm that constructs half the convex hull (say, the upper half) of a set of points presented incrementally. It

accepts one point at a time, which must lie to the right of all preceding ones, and immediately extends the convex

hull. The algorithm is explained in detail in “sample problems and algorithms”.

program ConvexHull; { of n ≤ 20 points in two dimensions }

const nmax = 19; { max number of points }

r = 3; { radius of point plot }

var x, y, dx, dy: array[0 .. nmax] of integer;

b: array[0 .. nmax] of integer; { backpointer }

n: integer; { number of points entered so far }

px, py: integer; { new point }

procedure PointZero;

begin

n := 0;

x[0] := 5; y[0] := 20; { the first point at fixed location }

dx[0] := 0; dy[0] := 1; { assume vertical tangent }

b[0] := 0; { points back to itself }

PaintOval(y[0] – r, x[0] – r, y[0] + r, x[0] + r)

end;

function NextRight: boolean;

begin

if n ≥ nmax then

NextRight := false

else begin

repeat until Button;

while Button do GetMouse(px, py);

if px ≤ x[n] then

NextRight := false

else begin

PaintOval(py – r, px – r, py + r, px + r);

n := n + 1; x[n] := px; y[n] := py;

dx[n] := x[n] – x[n – 1]; { dx > 0 } dy[n] := y[n] – y[n –1];

b[n] := n – 1;

MoveTo(px, py); Line(–dx[n], –dy[n]); NextRight := true

end

end

end;

procedure ComputeTangent;

var i: integer;

begin

i := b[n];

while dy[n] · dx[i] > dy[i] · dx[n] do begin { dy[n]/dx[n] >

dy[i]/dx[i] }

Algorithms and Data Structures 26 A Global Text

http://creativecommons.org/licenses/by/3.0/

3. Algorithm animation

i := b[i];

dx[n] := x[n] – x[i]; dy[n] := y[n] – y[i];

MoveTo(px, py); Line(–dx[n], –dy[n]);

b[n] := i

end;

MoveTo(px, py); PenSize(2, 2); Line(–dx[n], –dy[n]); PenNormal

end;

procedure Title;

begin

ShowText; ShowDrawing; { make sure windows lie on top }

WriteLn('The convex hull');

WriteLn('of n points in the plane sorted by x-coordinate');

WriteLn('is computed in linear time.');

Write('Click next point to the right, or Click left to quit.')

end;

begin { ConvexHull }

Title; PointZero;

while NextRight do ComputeTangent;

Write('That's it!')

end.

A gallery of algorithm snapshots

The screen dumps shown in Exhibit 3.1 were taken from demonstration programs that we use to illustrate topics

discussed in class. Although snapshots cannot convey the information and the impact of animations, they may give

the reader ideas to try out. We select two standard algorithm animation topics (sorting and random number

generation), and an example showing the effect of cumulative rounding errors.

Exhibit 3.1: Initial configuration of data, …

27

This book is licensed under a Creative Commons Attribution 3.0 License

Exhibit 3.1: … and snapshots from two sorting algorithms.

Visual test for randomness

Our visual system is amazingly powerful at detecting patterns of certain kinds in the midst of noise. Random

number generators (RNGs) are intended to simulate "noise" by means of simple formulas. When patterns appear in

the visual representation of supposedly random numbers, chances are that this RNG will also fail more rigorous

statistical tests. The eyes' pattern detection ability serves well to disqualify a faulty RNG but cannot certify one as

adequate. Exhibit 3.2 shows a simulation of the Galton board. In theory, the resulting density diagram should

approximate a bellshaped Gaussian distribution. Obviously, the RNG used falls short of expectations.

Exhibit 3.2: One look suffices to unmask a bad RNG.

Numerics of chaos, or chaos of numerical computation?

The following example shows the effect of rounding errors and precision in linear recurrence relations. The d-

step linear recurrence with constant coefficients in the domain of real or complex numbers,

Algorithms and Data Structures 28 A Global Text

http://creativecommons.org/licenses/by/3.0/

3. Algorithm animation

is one of the most frequent formulas evaluated in scientific and technical computation (e.g. for the solution of

differential equations). By proper choice of the constants ci and of initial values z0, z1, … , zd–1 we can generate

sequences zk that when plotted in the plane of complex numbers form many different figures. With d= 1 and |χ 1|= 1,

for example, we generate circles. The pictures in Exhibit 3.3 were all generated with d = 3 and conditions that

determine a curve that is most easily described as a circle 3 running around the perimeter of another circle 2 that

runs around a stationary circle 1. We performed this computation with a floating-point package that lets us pick

precision P (i.e. the number of bits in the mantissa). The resulting pictures look a bit chaotic, with a behavior we

have come to associate with fractals—even if the mathematics of generating them is completely different, and linear

recurrences computed without error would look much more regular. Notice that the first two images are generated

by the same formula, with a single bit of difference in the precision used. The whim of this 1-bit difference in

precision changes the image entirely.

29

This book is licensed under a Creative Commons Attribution 3.0 License

Algorithms and Data Structures 30 A Global Text

http://creativecommons.org/licenses/by/3.0/

3. Algorithm animation

Exhibit 3.3: The effect of rounding errors in linear recurrence relations.

Programming projects

1. Use your personal graphics frame program (the programming project of “graphics primitives and

environments”) to implement and animate the convex hull algorithm example.

31

This book is licensed under a Creative Commons Attribution 3.0 License

2. Use your graphics frame program to implement and animate the behavior of recurrence relations as

discussed in the section “A gallery of algorithm snapshots”.

3. Extend your graphics frame program with a set of dialog control operations sufficient to guide the user

through the various steps of the animation of recurrence relations: in particular, to give him the options, at

any time, to enter a new set of parameters, then execute the algorithm and animate it in either 'movie

mode' (it runs at a predetermined speed until stopped by the user), or 'step mode' [the display changes only

when the user enters a logical command 'next' (e.g. by clicking the mouse or hitting a specific key)].

Algorithms and Data Structures 32 A Global Text

http://creativecommons.org/licenses/by/3.0/

